[bookmark: _GoBack]BUS 509 BUSINESS ANALYTICS (SQL Queries practice sheet)
INSTRUCTOR: Ahmed Imran Kabir

-- Question 1a

USE sakila;

SELECT first_name, last_name FROM actor;

-- Question 1b

USE sakila;

SELECT concat(first_name," ", last_name) AS Actor_Name
FROM actor;

-- Question 2a

USE saklia;

SELECT actor_id, first_name, last_name
FROM actor
WHERE first_name = 'Joe';

-- Question 2b

USE sakila;

SELECT last_name
FROM actor
WHERE last_name LIKE '%GEN%';

-- Question 2c

USE Sakila;

SELECT last_name, first_name
FROM actor
WHERE last_name LIKE '%LI%'
ORDER BY last_name, first_name;

-- Question 2d

USE Sakila;

SELECT country_id, country
FROM country
WHERE country IN ('Afghanistan', 'Bangladesh', 'China');

-- Question 3a
USE Sakila;

ALTER TABLE actor
ADD COLUMN middle_name VARCHAR(45);

-- Question 3b

ALTER TABLE actor
MODIFY middle_name BLOB;

-- Question 3c
ALTER TABLE actor
DROP COLUMN middle_name;

-- 4a. List the last names of actors, as well as how many actors have that last name.
SELECT last_name, COUNT(last_name) as "Count of Last Name"
FROM actor
GROUP BY last_name;

-- 4b. List last names of actors and the number of actors who have that last name, but only for names
-- that are shared by at least two actors
SELECT last_name, COUNT(last_name) as "Count of Last Name"
FROM actor
GROUP BY last_name
HAVING COUNT(last_name) >=2;

-- 4c. Oh, no! The actor HARPO WILLIAMS was accidentally entered in the actor table as
-- GROUCHO WILLIAMS, the name of Harpo's second cousin's husband's yoga teacher.
-- Write a query to fix the record.

UPDATE actor
SET first_name = 'Harpo'
WHERE first_name = 'GROUCHO' AND last_name = 'WILLIAMS';

-- 4d. Perhaps we were too hasty in changing GROUCHO to HARPO. It turns out that
-- GROUCHO was the correct name after all! In a single query, if the first name of the actor is currently
-- HARPO, change it to GROUCHO. Otherwise, change the first name to MUCHO GROUCHO, as that
-- is exactly what the actor will be with the grievous error. BE CAREFUL NOT TO CHANGE THE FIRST NAME
 -- OF EVERY ACTOR TO MUCHO GROUCHO, HOWEVER! (Hint: update the record using a unique identifier.)--
 UPDATE actor
 SET first_name =
 CASE
 WHEN first_name = 'HARPO'
 THEN 'GROUCHO'
 ELSE 'MUCHO GROUCHO'
 END
 WHERE actor_id = 172;

 -- 5a. You cannot locate the schema of the address table. Which query would you use to re-create it?

SHOW CREATE TABLE sakila.address;

-- CREATE TABLE `address` (
-- `address_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
-- `address` varchar(50) NOT NULL,
-- `address2` varchar(50) DEFAULT NULL,
-- `district` varchar(20) NOT NULL,
-- `city_id` smallint(5) unsigned NOT NULL,
-- `postal_code` varchar(10) DEFAULT NULL,
-- `phone` varchar(20) NOT NULL,
-- `location` geometry NOT NULL,
-- `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
-- PRIMARY KEY (`address_id`),
-- KEY `idx_fk_city_id` (`city_id`),
-- SPATIAL KEY `idx_location` (`location`),
-- CONSTRAINT `fk_address_city` FOREIGN KEY (`city_id`) REFERENCES `city` (`city_id`) ON UPDATE CASCADE
--) ENGINE=InnoDB AUTO_INCREMENT=606 DEFAULT CHARSET=utf8

-- 6a. Use JOIN to display the first and last names, as well as the address, of each staff member. Use the
-- tables staff and address:

SELECT first_name, last_name, address
FROM staff s
INNER JOIN address a
ON s.address_id = a.address_id;

-- 6b. Use JOIN to display the total amount rung up by each staff member in August of 2005. Use tables
-- staff and payment.
SELECT first_name, last_name, SUM(amount)
FROM staff s
INNER JOIN payment p
ON s.staff_id = p.staff_id
GROUP BY p.staff_id
ORDER BY last_name ASC;

-- 6c. List each film and the number of actors who are listed for that film. Use tables film_actor and film.
-- Use inner join.

SELECT title, COUNT(actor_id)
FROM film f
INNER JOIN film_actor fa
ON f.film_id = fa.film_id
GROUP BY title;

-- 6d How many copies of the film Hunchback Impossible exist in the inventory system?

SELECT title, COUNT(inventory_id)
FROM film f
INNER JOIN inventory i
ON f.film_id = i.film_id
WHERE title = "Hunchback Impossible";

-- 6e. Using the tables payment and customer and the JOIN command, list the total paid by each customer. List the customers alphabetically
-- by last name:

SELECT last_name, first_name, SUM(amount)
FROM payment p
INNER JOIN customer c
ON p.customer_id = c.customer_id
GROUP BY p.customer_id
ORDER BY last_name ASC;

-- 7a. The music of Queen and Kris Kristofferson have seen an unlikely resurgence. As an unintended consequence, films starting
-- with the letters K and Q have also soared in popularity. Use subqueries to display the titles of movies starting with the letters K and Q whose
-- language is English.

USE Sakila;

SELECT title FROM film
WHERE language_id in
	(SELECT language_id
	FROM language
	WHERE name = "English")
AND (title LIKE "K%") OR (title LIKE "Q%");

-- 7b. Use subqueries to display all actors who appear in the film Alone Trip.

USE Sakila;

SELECT last_name, first_name
FROM actor
WHERE actor_id in
	(SELECT actor_id FROM film_actor
	WHERE film_id in
		(SELECT film_id FROM film
		WHERE title = "Alone Trip"));

-- 7c. You want to run an email marketing campaign in Canada, for which you will need the names and email addresses of all Canadian customers.
-- Use joins to retrieve this information.

USE Sakila;

SELECT country, last_name, first_name, email
FROM country c
LEFT JOIN customer cu
ON c.country_id = cu.customer_id
WHERE country = 'Canada';

-- 7d. Sales have been lagging among young families, and you wish to target all family movies for a promotion. Identify all movies
-- categorized as family films.

USE Sakila;

SELECT title, category
FROM film_list
WHERE category = 'Family';
		

-- 7e. Display the most frequently rented movies in descending order.

USE Sakila;

SELECT i.film_id, f.title, COUNT(r.inventory_id)
FROM inventory i
INNER JOIN rental r
ON i.inventory_id = r.inventory_id
INNER JOIN film_text f
ON i.film_id = f.film_id
GROUP BY r.inventory_id
ORDER BY COUNT(r.inventory_id) DESC;

-- 7f. Write a query to display how much business, in dollars, each store brought in.

SELECT store.store_id, SUM(amount)
FROM store
INNER JOIN staff
ON store.store_id = staff.store_id
INNER JOIN payment p
ON p.staff_id = staff.staff_id
GROUP BY store.store_id
ORDER BY SUM(amount);

-- 7g. Write a query to display for each store its store ID, city, and country.

USE Sakila;

SELECT s.store_id, city, country
FROM store s
INNER JOIN customer cu
ON s.store_id = cu.store_id
INNER JOIN staff st
ON s.store_id = st.store_id
INNER JOIN address a
ON cu.address_id = a.address_id
INNER JOIN city ci
ON a.city_id = ci.city_id
INNER JOIN country coun
ON ci.country_id = coun.country_id;
WHERE country = 'CANADA' AND country = 'AUSTRAILA';

-- 7h. List the top five genres in gross revenue in descending order. (Hint: you may need to use the following
-- tables: category, film_category, inventory, payment, and rental.)

USE Sakila;

SELECT name, SUM(p.amount)
FROM category c
INNER JOIN film_category fc
INNER JOIN inventory i
ON i.film_id = fc.film_id
INNER JOIN rental r
ON r.inventory_id = i.inventory_id
INNER JOIN payment p
GROUP BY name
LIMIT 5;

-- 8a. In your new role as an executive, you would like to have an easy way of
-- viewing the top five genres by gross revenue. Use the solution from the
-- problem above to create a view. If you haven't solved 7h, you can substitute
-- another query to create a view.

USE Sakila;

CREATE VIEW top_five_grossing_genres AS

SELECT name, SUM(p.amount)
FROM category c
INNER JOIN film_category fc
INNER JOIN inventory i
ON i.film_id = fc.film_id
INNER JOIN rental r
ON r.inventory_id = i.inventory_id
INNER JOIN payment p
GROUP BY name
LIMIT 5;

-- 8b. How would you display the view that you created in 8a?

SELECT * FROM top_five_grossing_genres;

-- 8c. You find that you no longer need the view top_five_genres.
-- Write a query to delete it.

DROP VIEW top_five_grossing_genres;

