
Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

In python, lists are part of the standard language. You will find them everywhere. Like almost

everything in Python, lists are objects. There are many methods associated to them. Some

of which are presented here below.

Quick example

>>> l = [1, 2, 3]

>>> l[0]

1

>>> l.append(1)

>>> l

[1, 2, 3, 1]

Difference between append() and extend()

Lists have several methods amongst which the append() and extend() methods. The former

appends an object to the end of the list (e.g., another list) while the later appends each

element of the iterable object (e.g., anothee list) to the end of the list.

For example, we can append an object (here the character ‘c’) to the end of a simple list as

follows:

>>> stack = ['a','b']

>>> stack.append('c')

>>> stack

['a', 'b', 'c']

However, if we want to append several objects contained in a list, the result as expected (or

not...) is:

>>> stack.append(['d', 'e', 'f'])

>>> stack

['a', 'b', 'c', ['d', 'e', 'f']]

The object ['d', 'e', 'f'] has been appended to the exiistng list. However, it happens

that sometimes what we want is to append the elements one by one of a given list rather the

list itself. You can do that manually of course, but a better solution is to use

the extend() method as follows:
>>> stack = ['a', 'b', 'c']

>>> stack.extend(['d', 'e','f'])

>>> stack

['a', 'b', 'c', 'd', 'e', 'f']

Other list methods

index

The index() methods searches for an element in a list. For instance:
>>> my_list = ['a','b','c','b', 'a']

>>> my_list.index('b')

1

It returns the index of the first and only occurence of ‘b’. If you want to specify a range of

valid index, you can indicate the start and stop indices:

>>> my_list = ['a','b','c','b', 'a']

>>> my_list.index('b', 2)

3

Warning

if the element is not found, an error is raised

http://thomas-cokelaer.info/tutorials/python/lists.html#id4
http://thomas-cokelaer.info/tutorials/python/lists.html#id4
http://thomas-cokelaer.info/tutorials/python/lists.html#id5
http://thomas-cokelaer.info/tutorials/python/lists.html#id5
http://thomas-cokelaer.info/tutorials/python/lists.html#id6
http://thomas-cokelaer.info/tutorials/python/lists.html#id6

Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

insert

You can remove element but also insert element wherever you want in a list:

>>> my_list.insert(2, 'a')

>>> my_list

['b', 'c', 'a', 'b']

The insert() methods insert an object before the index provided.

remove

Similarly, you can remove the first occurence of an element as follows:

>>> my_list.remove('a')

>>> my_list

['b', 'c', 'b', 'a']

pop

Or remove the last element of a list by using:

>>> my_list.pop()

'a'

>>> my_list

['b', 'c', 'b']

which also returns the value that has been removed.

count

You can count the number of element of a kind:

>>> my_list.count('b')

2

sort

There is a sort() method that performs an in-place sorting:
>>> my_list.sort()

>>> my_list

['a', 'b', 'b', 'c']

Here, it is quite simple since the elements are all characters. For standard types, the sorting

works well. Imagine now that you have some non-standard types. You can overwrite the

function used to perform the comparison as the first argument of the sort() method.

There is also the possiblity to sort in the reverse order:

>>> my_list.sort(reverse=True)

>>> my_list

['c', 'b', 'b', 'a']

reverse

Finally, you can reverse the element in-place:

>>> my_list = ['a', 'c' ,'b']

>>> my_list.reverse()

>>> my_list

['b', 'c', 'a']

Operators

The + operator can be used to extend a list:
>>> my_list = [1]

http://thomas-cokelaer.info/tutorials/python/lists.html#id7
http://thomas-cokelaer.info/tutorials/python/lists.html#id7

Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

>>> my_list += [2]

>>> my_list

[1, 2]

>>> my_list += [3, 4]

>>> my_list

[1, 2, 3, 4]

The * operator ease the creation of list with similar values

>>> my_list = [1, 2]

>>> my_list = my_list * 2

>>> my_list

[1, 2, 1, 2]

Slicing

Slicing uses the symbol : to access to part of a list:
>>> list[first index:last index:step]

>>> list[:]

>>> a = [0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5]

>>> a[2:]

[2, 3, 4, 5]

>>> a[:2]

[0, 1]

>>> a[2:-1]

[2, 3, 4]

By default the first index is 0, the last index is the last one..., and the step is 1. The step is

optional. So the following slicing are equivalent:

>>> a = [1, 2, 3, 4, 5, 6, 7, 8]

>>> a[:]

[1, 2, 3, 4, 5, 6, 7, 8]

>>> a[::1]

[1, 2, 3, 4, 5, 6, 7, 8]

>>> a[0::1]

[1, 2, 3, 4, 5, 6, 7, 8]

List comprehension

Traditionally, a piece of code that loops over a sequence could be written as follows:

>>> evens = []

>>> for i in range(10):

... if i % 2 == 0:

... evens.append(i)

>>> evens

[0, 2, 4, 6, 8]

This may work, but it actually makes things slower for Python because the interpreter works

on each loop to determine what part of the sequence has to be changed.

A list comprehension is the correct answer:
>>> [i for i in range(10) if i % 2 == 0]

[0, 2, 4, 6, 8]

Besides the fact that it is more efficient, it is also shorter and involves fewer elements.

http://thomas-cokelaer.info/tutorials/python/lists.html#id8
http://thomas-cokelaer.info/tutorials/python/lists.html#id8
http://thomas-cokelaer.info/tutorials/python/lists.html#id9
http://thomas-cokelaer.info/tutorials/python/lists.html#id9
http://thomas-cokelaer.info/tutorials/python/lists.html#id10

Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

Filtering Lists

>>> li = [1, 2]

>>> [elem*2 for elem in li if elem>1]

[4]

Lists as Stacks

The Python documentation gives an example of how to use lists as stacks, that is a last-in,

first-out data structures (LIFO).

An item can be added to a list by using the append() method. The last item can be removed

from the list by using the pop() method without passing any index to it.
>>> stack = ['a','b','c','d']

>>> stack.append('e')

>>> stack.append('f')

>>> stack

['a', 'b', 'c', 'd', 'e', 'f']

>>> stack.pop()

'f'

>>> stack

['a, 'b', 'c', 'd', 'e']

Lists as Queues

Another usage of list, again presented in Python documentation is to use lists as queues, that

is a first in - first out (FIFO).
>>> queue = ['a', 'b', 'c', 'd']

>>> queue.append('e')

>>> queue.append('f')

>>> queue

['a', 'b', 'c', 'd', 'e', 'f']

>>> queue.pop(0)

'a'

How to copy a list

There are three ways to copy a list:

>>> l2 = list(l)

>>> l2 = l[:]

>>> import copy

>>> l2 = copy.copy(l)

Warning

Don’t do l2 = l, which is a reference, not a copy.

The preceding techniques for copying a list create shallow copies. IT means that nested

objects will not be copied. Consider this example:
>>> a = [1, 2, [3, 4]]

>>> b = a[:]

>>> a[2][0] = 10

>>> a

[1, 2, [10, 4]]

>>> b

[1, 2, [10, 4]]

To get around this problem, you must perform a deep copy:

http://thomas-cokelaer.info/tutorials/python/lists.html#id10
http://thomas-cokelaer.info/tutorials/python/lists.html#id11
http://thomas-cokelaer.info/tutorials/python/lists.html#id11
http://docs.python.org/tutorial/datastructures.html
http://thomas-cokelaer.info/tutorials/python/lists.html#id12
http://thomas-cokelaer.info/tutorials/python/lists.html#id12
http://docs.python.org/tutorial/datastructures.html
http://thomas-cokelaer.info/tutorials/python/lists.html#id13
http://thomas-cokelaer.info/tutorials/python/lists.html#id13

Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

>>> import copy

>>> a = [1, 2, [3, 4]]

>>> b = copy.deepcopy(a)

>>> a[2][0] = 10

>>> a

[1, 2, [10, 4]]

>>> b

[1, 2, [3, 4]]

Inserting items into a sorted list

The bisect module provides tools to manipulate sorted lists.
>>> x = [4, 1]

>>> x.sort()

>>> import bisect

>>> bisect.insort(x, 2)

>>> x

[1, 2, 4]

To know where the index where the value would have been inserted, you could have use:

>>> x = [4, 1]

>>> x.sort()

>>> import bisect

>>> bisect.bisect(x, 2)

2

Min and Max

using min(arg1, arg2, *args)

print('Minimum is:', min(1, 3, 2, 5, 4))

using min(iterable)

num = [3, 2, 8, 5, 10, 6]

print('Minimum is:', min(num))

Difference between Del, Remove and, Pop

>>> a=[1,2,3]

>>> a.remove(2)

>>> a

[1, 3]

>>> a=[1,2,3]

>>> del a[1]

>>> a

http://docs.python.org/library/bisect.html#module-bisect

Structured Programming Language (Practice sheet on lists)

Instructor: Ahmed Imran Kabir (AIK)

[1, 3]

>>> a= [1,2,3]

>>> a.pop(1)

2

>>> a

[1, 3]

>>>

