
Relational Data Model andRelational Data Model and

Relational DB ConstraintsRelational DB Constraints
406.426 Design & Analysis of Database Systems406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

outline

relational model concepts

relational model constraints and relational database schemas

update operations and dealing with constraint violations

3

history

the relational model was first introduced by Ted Codd of IBM

research in 1970

based on set theory and first-order predicate logic

first generation: Oracle, Ingress, SQL/DS

current commercial systems: Oracle, DB2, Informix, SQL server

4

relational model concepts

the relational model represents the database as a collection

of relations

each relation resembles a table of values

each row in the table represents a collection of related data

values

all values in a column are of the same data type

terminology

a row is called a tuple

a column header is called an attribute

the table is called a relation

the data type describing the types of values that can appear

in each column is represented by a domain

5

domains, attributes, tuples, and relations

a domain D is a set of atomic values

atomic: each value in the domain is indivisible as far as the
relational model is concerned

specified by use of a data type from which the data values
forming the domain are drawn

domain is given a name, data type, and format

e.g., GPA

a relation schema (relational intension) R(A1, A2, …, An) is made up
of a relation name R and a list of attributes A1, A2, …, An

each attribute Ai is the name of a role played by some domain D
in R

D is called the domain of Ai, and denoted by dom(Ai)

n: the degree of a relation

e.g., STUDENT (Name, SSN, Age, Phone, GPA)

6

domains, attributes, tuples, and relations (cont.)

a relation (relation extension) r(R) of the relation schema R(A1, A2,

…, An) is a set of n-tuples r ={t1, t2, …, tm}

each n-tuple t is an ordered list of n values t = <v1, v2, …, vn>,
where each value vi, is an element of dom(Ai) or is a special null
value

the i-th value in tuple t, is referred to as t[Ai]

that is, r(R) (dom(A1) … dom(An))

7

characteristics of relations

tuple ordering is not part of a relation definition

however, the ordering of values in a tuple is important

an alternative definition of a relation

each tuple ti in r ={t1, t2, …, tm} is a mapping from R to D, and D = dom(A1)

dom(A2) … dom(An)

t[A
i
] must be in dom(A

i
) for 1 i n for each mapping t in r

a tuple can be considered as a set of (<attribute>, <value>) pairs

now the ordering of attributes becomes unimportant

8

characteristics of relations (cont.)

null values have several meanings: “value unknown”, “not

available”, “not applicable”, …

the relation schema can be interpreted as a declaration or a type of

assertion

some relations may represent facts about entities, whereas other

relations may represent facts about relationships: STUDENT(Name,

SSN, GPA) and MAJORS(SSN, Dept)

9

relational model constraints

the state of the whole database will correspond to the states of all its

relations at a particular point in time

there are generally many constraints on the actual values in a

database state

inherent model-based constraints: constraints that are inherent in the

relational data model

e.g., a relation cannot have duplicate tuples

schema-based constraints: constraints that can be directly expressed in

the schemas of the data model

domain constraints, constraints on nulls, key constraints, entity integrity

constraints, referential integrity constraints

application-based constraints: expressed and enforced by the

application programs

10

domain constraints and constraints on null values

specify that within each tuple, the value of each attribute A must be

an atomic value from dom(A)

example: characters, booleans, fixed-length strings, variable-length

strings, date, time, …

constraints on null values: specifies whether null values are or are

not permitted

11

key constraints

a relation is a set of tuples -> all elements of a set should be distinct

superkey (SK) of the relation schema R

subset of attributes of R with the property that no two tuples in

any relation state r of R should have the same combination of

values for these attributes

i.e., t1[SK] t2[SK], t1, t2

specifies a uniqueness constraint that no two distinct tuples in

any state r of R can have the same value for SK

every relation has at least one default superkey -> why?

key (K) of R is a superkey of R with the additional property that

removing any attribute A from K leaves a set of attributes K’ that is

not a superkey of R any more

hence, key is a minimal superkey

example: {SSN, Name, Age}, {SSN}

12

candidate keys

a relation schema may have more than one key -> each of the keys

is called a candidate key

we can designate one of the candidate keys as the primary key of

the relation

13

relational database schemas

a relational database usually contains many relations, with tuples in

relations that are related in various ways

a relational database schema S is a set of relation schemas S =

{R1, R2, …, Rm} and a set of integrity constraints IC

a relational database state DB of S is a set of relation states DB =

{r1, r2, …, rm} such that each ri is a state of Ri and such that the ri

relation states satisfy the IC

a database state that does not obey all the ICs is called an invalid

state; valid state, o.w.

14

example of a relational database schema

attributes that represent the same real-world concept may or may not have identical

names in different relations

attributes that represent different concepts may have the same name in different

relations

15

example of a database state

16

entity integrity and referential integrity

entity integrity constraint: no primary key value can be null

referential integrity constraint

specified between two relations and is used to maintain the
consistency among tuples in the two relations

a tuple in one relation that refers to another relation must refer to
an existing tuple in that relation

foreign key (FK) between R1 and R2

a set of attributes FK in relation schema R1 is a foreign key of R1

that references relation R2 if it satisfies the following:

the attributes in FK have the same domain(s) as the primary key
attributes PK of R2; the attributes FK are said to reference the relation R2

a value of FK in a tuple t1 of the current state r1(R1) either occurs as a value
of PK for some tuple t2 in the current state r2(R2) or null. in the former case,
we have t1[FK] = t2[PK], and we say that the tuple t1 references the tuple t2

if these two conditions hold, a referential integrity constraint from
R1 to R2 is said to hold

17

example

a value of DNO in any tuple t1 of the EMPLOYEE relation must match a value of the

primary key of DEPARTMENT – the DNUMBER attribute – in some tuple t2 of the

DEPARTMENT relation, or the value of DNO can be null if the employee does not belong

to a department

a foreign key can refer to its own relation -> the attribute SUPERSSN in EMPLOYEE

18

other types of constraints

semantic integrity constraints

specified and enforced within the application programs or by a

general purpose constraint specification language

example: the salary of an employee should not exceed the salary of the

employee’s supervisor

functional dependency constraint

establishes a functional relationship among two sets of attributes X

and Y

specifies that the value of X determines the value of Y in all states of a

relation

transition constraints (as opposed to the state constraints)

defined to deal with state changes in the DB

e.g., the salary of an employee can only increase

19

dealing with constraint violations: insert

insert operation

can violate any of the four types of constraints discussed so far: domain, key,
entity integrity, referential integrity constraints

examples

insert <‘Cecilia’, ‘F’, ‘Kolon’, null, ‘1960-4-5’, ‘6767 Windy Lane’, F, 28000,
null, 4>

insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-4-5’, ‘6767 Windy Lane’, F,
28000, ‘987654321’, 4>

insert <‘Cecilia’, ‘F’, ‘Kolon’, ‘677678989’, ‘1960-4-5’, ‘6767 Windy Lane’,
F, 28000, ‘987654321’, 100>

-> violates the entity integrity constraint!

-> violates the key constraint!

-> violates the referential integrity constraint!

20

dealing with constraint violations: delete

delete operation

can violate only referential integrity, if the
tuple being deleted is referenced by the foreign
keys from other tuples in the DB

examples

delete the EMPLOYEE tuple with SSN =
‘999887777’

delete the EMPLOYEE tuple with SSN =
‘333445555’

21

dealing with constraint violations: update

update operation

updating an attribute that is neither a primary key nor a foreign key
usually causes no problems

modifying a primary key value is similar to deleting one tuple and
inserting another in its place

if a foreign key attribute is modified, the DBMS must make sure that
the new value refers to an existing tuple in the referenced relation (or is
null)

examples

update the DNO of the EMPLOYEE tuple with SSN = ‘999887777’ to
7

update the SSN of the EMPLOYEE tuple with SSN = ‘999887777’ to
‘987654321’

-> violates the referential integrity constraint!

-> violates the key & referential integrity constraints!

